
§1 INTRO TURTLE 1

1. Turtle. Turtle is a modern emulator of a computer terminal. A computer terminal is a device
which communicates with a computer. In the earliest days of automatic computing machines, as they
were then known1, the computer was an enormous machine and terminals had little or no processing
ability of their own.

The first devices that can be properly thought of as terminals consisted of a printer and a typewriter
keyboard. Rather than marking the paper like a plain typewriter would the terminal informs the
computer (host) which key was pressed and the host can instruct the printer to print. They were
known as teletypewriters and although they have long since become obsolete the communication line
that modern terminals use is still called a TTY, or a pseudo-TTY or PTY if the link is simulated
between two computer programs.

Attempts to define the communication between the terminal and the host began long before computers
existed. Shortly after the invention of the electric telegraph, in the 1870s, Émile Baudot invented a
method of encoding information that used a fixed number of bits for each item of data. This system lent
itself better to processing by machines than Morse code and soon replaced it.

Baudot’s first code used six bits, far more than necessary for the basic English alphabet, so the next
iteration which was popularised and later became known as International Telegraph Alphabet 1 (ITA1)
reduced the space to five bits.

Five bits allows only 32 distinct symbols to be encoded so Baudot/ITA1 defined two codes which change
the meaning of all subsequent codes until reaching another changing code: −O.−−− changes meaning to
figures, 0−.−−− changes to letters. This is now known as shifting, which has fortunately been made
mostly obsolete by Unicode.

Baudot’s code was designed to be typed into a simple keyboard with two keys controlled by the left
hand and three by the right, corresponding to the position of each of the five bits. Towards the end of
the century typewriters became popular and Donald Murray developed a system which encoded each
key’s combination as holes punched into a strip of paper tape. With this improvement a new code was
developed that optimised the arrangement of bits for the benefit of the machinery (eg. by encoding
common letters with fewer holes to punch) rather than for operator memory. This code with some
changes eventually became known as ITA2.

Murry’s code is also a 5-bit code with two shift levels for figures and letters. It is important to note
that some codes (in particular the codes that perform the shift) are the same in both levels.

Interestingly Murray’s original printer was criticised for requiring manual operation, so the next
machine he produced had a “line” control which advanced the paper (Line Feed) and returned the
print head to the margin (Carriage Return). This iteration also introduced the concept of using the code
with all bits set to erase the previous code by using that value to (re-)introduce the letters shift level.

After many years of use and growth and FIELDATA (which also used codes of 6 and 7 bits), and
despite IBM’s attempt to turn it into EBCDIC, national standards bodies eventually ratified the 7-bit
standard code for information interchange into ANSI-X3.4 (it was known as ASA then, not ANSI),
ECMA-6 and ISO-646, known as ASCII. This code rearranged the letters and symbols again, this time
into alphabetical and numeric order.

ASCII expanded the concepts of level shifting and line motions into a set of control codes that ended
up in the first two columns, sometimes called sticks, of the code table. ASCII was designed to allow
national bodies to define their own variant with custom characters in chosen locations. This thankfully
saw very little uptake but a similar technique based more closely on ITA 1 & 2 level shifting was adopted
by expanding the code to eight bits and designating codes or code sequences to select from one of several
7-bit character sets.

Like with ASCII the standards bodies worked co-operatively with only a little undue pressure from
the Americans and/or British to further develop character encoding techniques and so each organisation
has ratified each others’ standards, giving them their own identifier.

Because of reasons some of those organisations protect the published standard documents behind strict
copyright and fees while others release theirs for free. Sometimes the draft of a published standard,
practically identical to the finished product, are made available from the same organisation that protects
the final publication.

We will be referring to the free standards from ECMA.

1 A “computer” was a person who would calculate, or compute, the answer to a mathematical problem.

2 TURTLE INTRO §2

2. These are the standards, including some pseudo or de-facto standards, which govern a terminal’s
communication with its host:

ECMA-6, known as ISO-646, ANSI-X3.4 or ASCII. 7-Bit Coded Character Set.
ECMA-35, ISO-2022 or ANSI-X3.41: Character Code Structure and Extension Techniques.
ECMA-43, or ISO-4873: 8-Bit Coded Character Set Structure and Rules.
ECMA-48, ISO-6429 or ANSI-X3.64: Control Functions for Coded Character Sets.
Turtle also supports Unicode, also known as ISO-10646.
Digital Equipment Corporation made a series of standard documents describing the operation of their

terminals and terminal emulators which Turtle mostly emulates. These are known as DEC-STD-070.
The development of personal computers led Xterm to become the de facto standard terminal emulator

and it includes a document describing the control sequences it understands known as ctlseqs.
The contents of a terminal description file (terminfo) are described by ncurses in the file Caps.

3. Turtle is a unix application with few dependencies however it has been written with an eye towards
portability:

OpenGL graphics on X (GLX). Turtle uses libepoxy1 to find extensions and resolve symbols.
libevent2 to multiplex I/O.
Portable Snippets3. A collection of C preprocessor macros that aid portability, included in the parsnip

directory.
And of course CWEB4 is required to build the sources.

4. Turtle is built from several modules. The most significant are panel.o which draws the visual
display and term.o which handles communication with the host. These comprise the implementation of
the interchange standards discussed above. In addition there is turtle.o which provides them with a
user interface. Other modules have a support role:
atlas.o — texture atlas
buf.o — dynamic C buffer
con.o — a command-and-control interface
font.o — hardly rendering fonts
glooey.o — experimental gui framework
jj.o — atoms and s-expression evaluator (scheme)
site.o — C preprocessor abuse and portability hacks
tap.o — test suite
tri.o — OpenGL/GLX interface
ucpdb.o — database for per-code-point information
unicode.o — utf-8 codec

5. The brief history of terminal communication techniques was significantly informed by The Evolution
of Character Codes, 1874–1968 by Eric Fischer which also contains a wealth of references to further
information.

INTRO

Section Page

Turtle . 1 1

	Turtle
	Names of the sections

